
Searching for the Kernel of a Polygon:
A Competitive Strategy

Using Self-Approaching Curves∗

Christian Icking∗∗ Rolf Klein∗∗ Elmar Langetepe∗∗

Abstract

We present a competitive strategy for walking into the kernel of an initially
unknown star-shaped polygon. From an arbitrary start point, s, within the
polygon, our strategy finds a path to the closest kernel point, k, whose length
does not exceed 5.3331 . . . times the distance from s to k. This is complemented
by a general lower bound of

√
2. Our analysis relies on a result about a new

and interesting class of curves which are self-approaching in the following sense.
For any three consecutive points a, b, c on the curve the point b is closer to
c than a to c. We show a tight upper bound of 5.3331 . . . for the length of a
self-approaching curve over the distance between its endpoints.

Keywords. Competitive strategy, on-line strategy, simple polygon, kernel,
curves with increasing chords, self-approaching curves, geometric optimization.

1 Introduction

Suppose that a mobile robot equipped with a 360 degree vision system “wakes up”
in an unknown environment. Its task is to go to some location from which the whole
environment is visible. This should be achieved as efficiently as possible.

In attacking this problem we are using the following model. The robot is a point,
its environment is a simple polygon, P . Clearly, we have to assume that P is star-
shaped, or no location with the required property would exist; see Section 2 for
definitions. At each point u, the robot is provided with the visibility polygon vis(u).
The cost of the robot’s motion is measured by the arc length of its path; we ignore
the cost of planning the path, which will in fact turn out to be negligible.

If the robot knew a map of the polygon and its start position beforehand, it could
employ one of the classic algorithms for computing the kernel, see [2, 16]. Then it
could determine the kernel point, k, closest to its start position, s, and go straight
from s to k; note that by definition each point of the kernel can see any other point
of P , so that the line segment from k to s cannot be blocked. This would result in a

∗This work was partially supported by the Deutsche Forschungsgemeinschaft, grant Kl 655/8-2.
A preliminary version has appeared in the proceedings of the 11th Annual ACM Symposium on
Computational Geometry.

∗∗FernUniversität Hagen, Praktische Informatik VI, Informatikzentrum, 58084 Hagen, Germany,
{Christian.Icking,Rolf.Klein,Elmar.Langetepe}@fernuni-hagen.de

1

perfect solution at cost d(k, s), where d denotes the Euclidean distance.
But since the polygon P is not known to the robot a priori, its actions are bound

to contain elements of try and error which cause extra cost. For example, in the
situations depicted in Figure 1 a detour cannot be avoided; see Lemma 5.1.

cave

s s

Figure 1: Identical visibility polygons but completely different kernels.

In this paper we present a strategy that guarantees a path length bounded by
5.3331 . . . times d(k, s). In general, a strategy for a problem class PC is called com-
petitive with competitive factor C if each instance P of PC can be solved at a cost
not exceeding C times the cost of a perfect solution of P with full information in
advance.

Competitive strategies for autonomous robots have recently received considerable
interest in computational geometry. For example, the problem of finding a goal in
an unknown environment has been studied in [5, 9, 11, 13, 15, 17]. In [6, 7, 10] the
task of drawing a map is addressed. How to decide on the robot’s current location
if a map is available has been investigated in [8, 14]. A special case of the present
problem, where P contains only one reflex vertex, has been optimally solved in [12].

Competitive strategies offer many advantages. They are superior to heuristic ap-
proaches because they come with a proven performance guarantee. Though, they can
often be made as simple as heuristic rules, as the present paper demonstrates. Some-
times competitive strategies exist even for problems whose optimal solution would be
NP-hard; see [7, 8]. However, analyzing a competitive strategy is often difficult so
that the proven bound is considerably bigger than the real competitive factor.

This paper is organized as follows. In Section 2 we briefly recall some definitions
and state a simple fact on visibility polygons. Then, in Section 3, we extract a crite-
rion for approaching the kernel and describe our strategy CAB (Continuous Angular
Bisector) for finding the closest kernel point. The strategy is very easy to implement;
at each time an angular bisector between two vertices is chosen as direction. If the
polygon P is not star-shaped, the robot notices this and ends its motion. Otherwise
it will arrive at the closest kernel point, k.

In Section 4 we introduce the class of self-approaching curves, i. e. oriented planar
curves that will always get closer to all their future points with respect to the orien-

2

tation. We characterize the self-approaching property through normals to the curve
and show that paths generated by CAB are self-approaching. Then we prove that for
self-approaching curves there is a tight upper bound of 5.3331 . . . for their detour, i. e.
the ratio of their arc length divided by the distance between their endpoints. There-
fore, we have the same value as an upper bound for the competitive factor of strategy
CAB. Curves that are self-approaching in both directions have been called curves with
increasing chords. In [18], Rote has solved an old open problem mentioned as prob-
lem G3 in [4] by proving a tight bound for this subclass of self-approaching curves.
Unfortunately, it seems that his technique cannot be applied to our non-symmetric
case. Our proof for the upper bound is based on the observation that the arc length
of a self-approaching curve does not exceed the perimeter of its convex hull. Finally,
in Section 5, we prove that there is a lower bound of

√
2 for the competitive factor of

any possible strategy for finding the kernel.

2 Visibility in a polygon

In this section we briefly recall some elementary facts on visibility in simple polygons.
As before, let P denote a simple planar polygon, interior area plus boundary.

Definition 2.1 Let u, v be two points in P . Then v is visible from u if the line
segment uv is contained in P . The set of all points of P that are visible from u
is called the visibility polygon of u, denoted by vis(u) (sometimes visP (u) to avoid
ambiguity).

Definition 2.2 The kernel of P , ker(P), is the set of all points in P from which
each point of P is visible. If ker(P) is not empty, then P is called star-shaped.

Clearly, visibility is a symmetric relation. Only for convex polygons does P= ker(P)
hold. Otherwise the polygon has at least one reflex vertex, i. e. one whose internal
angle is greater than 180◦, and the kernel is a proper subset of P which can be ob-
tained in the following way. Each edge e of P defines two halfplanes, an inner one
which locally contains points of the interior of P , and an outer one. The kernel of
P is known to be the intersection of all inner halfplanes. In particular, the kernel is
convex. In Figure 1, the kernels are represented by shaded areas.

Each visibility polygon vis(u) is star-shaped and contains u in its kernel. Its
boundary consists of (segments of) original edges of P , and of edges that do not
belong to P . These spurious edges are segments of lines emanating from u that touch
a reflex vertex of P before they hit the boundary of P . A spurious edge separates
the part of P that is visible from u from a part which is not, a so-called cave; see
Figure 1, where the visibility polygons are depicted by dashed lines.

In the two pictures of Figure 1 the visibility polygons are identical, whereas the
kernels are quite different. Thus, from point s the robot has only little information
about the kernel of P . But from any point in P , one can at least identify the kernel of
the actual visibility polygon! The following lemma shows how these sets are related:
the kernel of the visibility polygon shrinks as visibility increases.

3

Lemma 2.3 Let u, v be points in P such that vis(v) ⊆ vis(u). Then we have the
following inclusions.

ker(P) ⊆ ker(vis(u)) ⊆ ker(vis(v))

Proof. Let x be a point in ker(P), and let us set P ′ = vis(u).
For the first inclusion we want to show that x ∈ ker(vis(u)), i. e. x is in P ′

and visP ′(x) = P ′. The point x can see all of P , in particular the point u, so
x ∈ vis(u) = P ′ and for some arbitrary point y ∈ P ′ we know that the line segment
xy is contained in P . No edge of P ′ can intersect xy, neither the spurious edges
because otherwise one of x and y would lie in a cave of P invisible from u, nor the
other edges, of course. So xy ⊂ P ′ for any point y ∈ P ′, which means that x can see,
from within the polygon P ′, all of P ′, in other words x ∈ ker(P ′) = ker(vis(u)).

For the second inclusion we apply the first inclusion for P ′ and v. By assumption

v ∈ vis(v) ⊆ vis(u) = P ′

holds, therefore the application is justified and we conclude ker(vis(u)) ⊆ ker(visP ′(v)).
To complete the proof we show visP ′(v) = vis(v). The inclusion visP ′(v) ⊆ vis(v)

holds since a line segment vx in P ′ lies inside P ⊇ P ′. The reverse inclusion is also
fulfilled: If x ∈ vis(v) holds then by assumption

vx ⊆ vis(v) ⊆ vis(u) = P ′

is true and also x ∈ visP ′(v) holds. Altogether the second inclusion is true. 2

In the next sections we will use the benefits of Lemma 2.3. We prefer strategies that
increase the visibility polygon and under application of Lemma 2.3 we conclude that
they approach the kernel successively.

3 A strategy for the kernel problem

Throughout this section we assume that P is a star-shaped simple polygon.

3.1 A criterion for approaching the kernel

At the start point, s, the robot may check whether vis(s) contains spurious edges. If
not, it can conclude that s lies in the kernel of P , and stop. Otherwise, the robot
should proceed from s on such a path that it gains insight into all the caves, and
never lets out of sight points of P it has already seen, so that the visibility polygon
grows monotonically.

The robot can only gain insight into a cave if it walks into the inner halfplane
defined by the cave’s spurious edge, causing the edge to rotate about its supporting
reflex vertex into the cave. The robot can only keep an eye on what it has so far seen
if, in addition, it never leaves the inner halfplane of a visible edge of P ; in particular,
it must stay within P . This leads to the following definition. We assume that the
intersection of an empty set of halfplanes equals the full plane.

4

Definition 3.1 Let u be a point in P .
(i) Let G(u) denote the gaining wedge that results from intersecting the inner half-

planes of the spurious edges of vis(u). The reflex vertices of P associated with
the two halflines bounding G(u) are called the maximum constraint vertices at u.

(ii) Let K(u) denote the keeping wedge that results from intersecting the inner half-
planes of all edges of P that contain u, or are visible from and collinear with u.

A point u belongs to the kernel of P if and only if G(u) equals the full plane. For
almost all points of P the keeping wedge K(u) is equal to the full plane.

ker(P)

p

ker(vis(u))

v1

v2

e

G(u)

v3

u

Figure 2: The set G(u) ∩ K(u) equals ker(vis(u)) in the neighborhood of u and the
kernel of P is contained in ker(vis(u)).

In Figure 2 for point u there are two maximum constrained vertices, v2 and v3.
For point p there is only one maximum constraint vertex, namely v3, because this is
the only visible reflex vertex that causes a cave with respect to p. At u the keeping
wedge, K(u), is the inner halfplane of the supporting line of edge e.

The next lemma shows that walking continuously into G(u) ∩ K(u) is always
possible and leads to a strategy for increasing vis(u).

Lemma 3.2 Within a sufficiently small neighborhood of a point u ∈ P the set G(u)∩
K(u) equals ker(vis(u)) and is nonempty. If the robot moves into this set then vis(u)
grows or it remains the same if u belongs to ker(P).

Proof. The set ker(vis(u)) is defined by the intersection of three types of halfplanes.
First we have the inner halfplanes of spurious edges of P which also define the gaining
wedge, G(u). Second we have the inner halfplanes of all edges of P that contain u,
or are visible from and collinear with u which are those that also define the keeping
wedge, K(u). The remaining halfplanes bounding ker(vis(u)) stem from supporting
lines of edges which do not intersect a sufficiently small neighborhood of u ∈ P . For
an example see Figure 2.

Due to Lemma 2.3, ker(vis(u)) contains ker(P), therefore it is nonempty. By
construction of G(u) ∩K(u), the set vis(u) grows, unless u belongs to ker(P). 2

5

From Lemma 2.3 and Lemma 3.2 we conclude that a process of stepping continu-
ously into G(u) ∩K(u) causes ker(vis(u)) to shrink while ker(P) is always contained
in it (see Figure 2), such that eventually ker(vis(u)) shrinks to ker(P).

3.2 The CAB strategy

In the previous section we have seen that for increasing visibility it seems reasonable
to move into the gaining wedge G(u) while not leaving the keeping wedge K(u). Our
idea is to continuously follow the angular bisector of G(u) or, if this is not contained
in K(u), the nearest possible direction in K(u). The resulting strategy is called CAB
(Continuous Angular Bisector) and is formally defined as follows.

Strategy CAB
u := s;
while vis(u) 6= P do

compute gaining wedge G(u);
m := angular bisector of G(u);
if m leaves the keeping wedge K(u)

then walk in direction of the projection of m along the boundary of K(u)
else walk along m

end-if
end-while;
go straight to the point k ∈ ker(P) closest to s

end

This strategy is meant to be continuous, so the direction is adjusted very frequently
as compared to the robot’s speed; see Figure 3 for an example of a complete path
generated by CAB.

v3

v6

p7
p6

p5

p4

p2

p0

v5

k

v2
v1

p3

p1

v4

Figure 3: A path generated by strategy CAB.

6

Figure 4 illustrates a case where the then-branch applies. The following lemma
shows why the projection of the angular bisector, m, is well-defined in this case.

µ

γ

β

K(u)

G(u)

um

Figure 4: If the angular bisector m of the gaining wedge, G(u), leaves the keeping
wedge, K(u), the robot walks along the boundary of K(u).

Lemma 3.3 If the angular bisector m of G(u) leaves the wedge K(u) then it forms
an angle µ < 90◦ with exactly one of the two bounding halflines of K(u). Therefore,
the projection onto K(u) is well-defined. Moreover, G(u) ∩ K(u) includes an angle
β ≤ 90◦.

Proof. Using the notations of Figure 4, we have µ = γ/2 − β ≤ 90◦ − β ≤ 90◦.
Equality could hold for both halflines bounding K(u) only if G(u) and K(u) are both
180◦ wedges with disjoint interiors. Since ker(P) is contained in their intersection,
this means that u can already look into the cave(s) responsible for G(u). This is
a contradiction to Definition 3.1 because an edge is spurious only if it separates a
non-empty part of P from vis(u). Finally, we have β ≤ 90◦ because µ is bigger than
0, by assumption. 2

Figure 3 shows an example where the robot walks along boundaries of keeping
wedges. Between p3 and p4, the maximum constraint vertices are v4 and v5. At point
p4, it hits the extension of the upper edge incident to reflex vertex v2. The robot
follows this extension to v2. Here, K(u) is defined by both edge extensions. Now
the robot follows the extension of the lower edge incident to v2 until it arrives at p5.
Still, v4 and v5 are the maximum constraint vertices. From p5 on, the robot resumes
following the angular bisector which no longer crosses the edge extension.

As soon as the robot arrives in the kernel of P at p7, it knows the whole polygon.
According to CAB, it then determines which kernel point k would have been closest
to its start point, s, and walks to k within ker(P). In practice, one might skip the
last step because the robot’s job can be considered done as soon as it reaches some
point of the kernel. Since this does not lead to a smaller competitive factor, we can
as well account for the last step, too.

7

Lemma 3.4 The path M generated by strategy CAB consists of segments of hyper-
bolae and ellipses.

Proof. For two maximum constraint vertices v1 and v2 the two cases depicted in
Figure 5 may arise.

v1

v2

u

(i)

αα

v2

α
α

(ii)u

v1

Figure 5: Following the angular bisector generates (i) hyperbolae or (ii) ellipses.

In (i), the boundary of the gaining wedge G(u) of a point u consists of halflines
originating from u that pass through vertices v1 and v2. In this case CAB describes a
curve which is a unique solution of an ordinary differential equation which turns out
to be a hyperbola with focus points v1 and v2. While following this hyperbola, the
difference d(p, v1) − d(p, v2) remains constant. If the difference equals 0 one obtains
a line, as a special case (line segments are also generated while the robot follows the
boundary of a keeping wedge).

In (ii), the gaining wedge G(u) of a point u is formed by one halfline originating
from u that runs through its reflex vertex, v1, and another one, whose prolongation
beyond u runs through v2. In this case CAB describes a piece of an ellipse with focus
points v1 and v2. Here, the sum d(p, v1) + d(p, v2) remains constant.

A circle arises as a special case if there is only one constraint vertex. 2

Lemma 3.5 The number of hyperbolic and ellyptic segments the path M generated
by CAB consists of is O(n), where n denotes the number of vertices of P .

Proof. There are three possibilities for a segment, as described in Figure 5, to end.
First, a maximum constrained vertex may be newly discovered or may get fully

explored. For each vertex this happens at most once.
A segment also ends if the strategy begins to follow the boundary of the keeping

wedge. In this case the robot follows an edge of P or the prolongation of an edge
of P . The robot leaves this line either for the supporting line of another edge or for
a piece of a hyperbola or ellipse. In the second case the path can only return to the
same supporting line after a maximum constrained vertex has changed as described
in the previous paragraph, due to the convex form of the segments and because its
starting direction is flush with the line.

Finally a piece of the path ends if the kernel is reached; this occurs only once.
Altogether the total number of segments in M is in O(n). 2

8

4 Self-approaching curves

In the first part of this section, we introduce the notion of self-approaching curves.
Then we show that a path created by CAB belongs to this class. Finally, we prove a
tight upper bound for the length of a self-approaching curve divided by the distance
of its endpoints.

4.1 Definitions and properties

The curves considered here are assumed to be piecewise smooth curves in the plane,
as is the case for all curves generated by strategy CAB, due to Lemma 3.4 and Lem-
ma 3.5. For a curve C and a point a inside a smooth piece of C , the tangent to C
at a and the normal to C at a, which is perpendicular to the tangent, are uniquely
determined. Let a be a point of C such that two smooth pieces of C meet at a. The
two normals N1 and N2 to the corresponding smooth pieces at a define a set of lines
(see Figure 6), each line of this set is regarded as a normal to C at a.

a
N2

N1

C

Figure 6: The bundle of lines defined as normals to C at a.

As before, let d(a, b) denote the Euclidean distance between two points a and b.
For two points a ≤ b (a < b) on a directed curve C , C≥a (C>a) denotes the part of
C from a to the end (without a), C [a, b] means the part of C between a and b, and
length(C [a, b]) means its arc length.

Definition 4.1 An oriented curve is called self-approaching if the inequality

d(a, c) ≥ d(b, c)

is fulfilled for any three consecutive points a, b, c on the curve.
Let C be an oriented curve from a to b. Then the quantity

length(C [a, b])

d(a, b)

is called the detour of a curve from a to b.

The following lemma shows that the self-approaching property is equivalent to the
fact that for any point a on the curve the rest of the curve lies fully on one side of
any normal to C at a, we call this the normal-property.

9

Lemma 4.2 An oriented curve C is self-approaching iff any normal to C at any
point a does not cross C>a.

Proof. The normal-property means that in point a we move closer or hold the
distance to every point in C>a. This property holds continuously, so for any three
consecutive points the self-approaching property holds.

If the normal-property is not fulfilled then there exists a point a such that a normal
to C at a crosses C>a in c′. Then in a we move away from some points in C>c′. So
there are points b ∈ C>a and c ∈ C>c′ for which the self-approaching property is not
true. 2

Example. The logarithmic spiral, directed to the center, is an interesting example
for such a curve. In polar coordinates it is the set of all points (ϕ, eϕ cotα) with constant
α < 90◦, which is the angle between the tangent and the radius to each point on the
curve, see Figure 7. It is self-approaching if α fulfills

α ≤ arctan

(
3π

2W(3
2
π)

)
≈ 74.66◦

in which W denotes Lambert’s W function [3] defined by the functional equation
W (x) eW (x) = x. Figure 7 shows the limiting case where the normal at any point is
tangent to the rest of the curve.

α

b

a

α

α

α

Figure 7: The narrowest self-approaching logarithmic spiral.

This special curve is in a sense the narrowest self-approaching logarithmic spiral.
Let us suppose that we fix a string at point b of Figure 7 and attach a pencil at
point a. Now we move the pencil clockwise holding the string taut. Then the pencil

10

draws the spiral while the string wraps around the inner circle of the spiral. Therefore
this curve is its own involute.

One can show that its detour equals 1/ cos αmax ≈ 3.78, but despite its optimized
form there are other self-approaching curves with a bigger detour as we will see in
Section 4.3.

4.2 CAB curves are self-approaching

Let M be a path generated by CAB. We want to show that M is self-approaching.
As we have shown in Section 3.2, M is an oriented planar curve that consists of a
finite number of smooth pieces. So it is sufficient to prove the normal-property, due
to Lemma 4.2.

Lemma 4.3 For every point u on M , M>u is contained in ker(vis(u)).

Proof. We only make use of the fact that at each point u CAB walks intoK(u)∩G(u).
From Lemma 3.2 we know that the actual visibility polygon grows. So for a point
v ∈ M>u we have vis(u) ⊆ vis(v) and from Lemma 2.3 we conclude ker(vis(v)) ⊆
ker(vis(u)). By definition v ∈ ker(vis(v)) and the claim follows. 2

Theorem 4.4 The path M generated by CAB is self-approaching.

Proof. Let u be a point on M . From Lemma 3.2 we know that ker(vis(u)) is
enclosed in the wedge K(u) ∩ G(u). We show that a normal to M at u cannot cross
the boundary of K(u) ∩G(u).

When the robot follows the angular bisector of G(u) (CAB’s else-branch) then
G(u) has a maximum angle of 180◦ and the wedge K(u) ∩G(u) is enclosed by G(u).
So the normal to the bisector of G(u) at u cannot cross the boundary of K(u)∩G(u).
Otherwise (then-branch) the robot follows the boundary of K(u). Due to Lemma 3.3
the wedge G(u) ∩K(u) includes an angle β ≤ 90◦ and so the normal to a border of
G(u) ∩K(u) at u cannot cross G(u) ∩K(u).

Summarizing, no normal to M at u can cross ker(vis(u)), which in turn contains
M>u, due to Lemma 4.3. Therefore M is self-approaching. 2

4.3 Analysing self-approaching curves

In this section we analyse the detour of self-approaching curves. First we show that
their length is bounded by the perimeter of their convex hull. Then we estimate the
perimeter of their convex hull and prove, by giving an example, that the bound is
tight.

Let ch(C) denote the convex hull of a curve C and per(C) the length of the
perimeter of ch(C).

Theorem 4.5 The arc length of a self-approaching curve C is less than or equal to
the perimeter, per(C), of its convex hull.

11

Proof. The arc length of a piecewise smooth curve C is, by definition, the supremum
of the lengths of all polygonal chains with vertices on C in the same order as they
appear on C . Therefore, an upper bound for the length of all such chains is also an
upper bound for the length of C .

We take an arbitrary polygonal chain Q whose vertices lie on C in the same order.
By induction on the number of vertices of Q, we will prove that Q is shorter than
the perimeter, per(Q), of its convex hull, ch(Q), which in turn is bounded by per(C).
Note that the vertices of ch(Q) are also vertices of Q and are therefore points on C .

The assertion is true for Q being a line segment, so let us assume that Q has at
least three vertices, the first two are called a and b. The induction hypothesis is that
length(Q≥b) ≤ per(Q≥b).

We distinguish two cases depending on whether b lies on the boundary of ch(Q)
or not.

c

b

a

c′
e

ch(Q≥b)

C

g

f ′

e′

f

Figure 8: d(c, a) + d(g, a) − d(a, b) ≥ d(g, f) + d(f, e) + d(e, c).

Case 1. The point b is on the boundary of ch(Q). We have a situation as depicted in
Figure 8. From ch(Q≥b) to ch(Q), the convex hull changes as follows. The segments
gf , f e and ec which belong to ch(Q≥b) are replaced by the segments ca and ga.
Since length(Q≥b) + d(a, b) = length(Q) it suffices to prove that

d(c, a) + d(g, a) − d(a, b) ≥ d(g, f) + d(f, e) + d(e, c).

We do not know which way C takes from a to b but there are either points f ′ ∈
`(g, f), e′ ∈ `(f, e) and c′ ∈ `(e, c) in exactly this order on C [a, b] or there are points
c′ ∈ `(c, e), e′ ∈ `(e, f) and f ′ ∈ `(f, g) in this order on C [a, b]. W.l.o.g. we assume
the first case.

While the curve C moves from a to f ′ it gets closer to f . Therefore

d(g, a) ≥ d(g, f ′) = d(g, f) + d(f, f ′)

By the same argument C gets closer to f while it runs from f ′ to e′. Therefore

d(f, f ′) ≥ d(f, e′) = d(f, e) + d(e, e′)

12

Similarly we have d(e, e′) ≥ d(e, c) + d(c, c′) and also d(c, c′) ≥ d(c, b). Altogether we
conclude

d(c, a) + d(g, a) ≥ d(g, f) + d(f, e) + d(e, c) + d(c, b) + d(c, a).

The fact d(c, b) + d(c, a) ≥ d(a, b) finishes the proof.
Notice that the arguments generalize to any number of vertices of ch(Q≥b), instead

of e, f and c and also for cases with c = b or g = b.
Notice that this argument generalizes to any number of vertices of ch(Q≥b), instead

of c and e.

c

p

ϕ

e

f

b

ψ

ch(Q≥b)

a

Figure 9: d(c, p) + d(e, p) − d(b, c) − d(b, e) ≥ d(b, p)

Case 2. The point b is not on the boundary of ch(Q). Then a must lie in the wedge
formed by the prolongations of the adjacent edges of ch(Q≥b) at b, see Figure 9. The
neighbouring vertices of b in ch(Q≥b) are called c and e. W.l.o.g. we can assume that c
appears before e on C . Then d(b, e) ≥ d(c, e) holds, and we have ϕ ≤ 90◦ since ce is
not the longest edge of the triangle bce.

We assume a situation as in Figure 9 where the points b and e of ch(Q≥b) are not
on the boundary of ch(Q). Let p be the intersection point of ab and `(e, f). Using the
induction hypothesis and the fact ϕ ≤ 90◦ we show that length(Q≥p) is not greater
than per(Q≥p). From ch(Q≥b) to ch(Q≥p), the convex hull changes as follows. The
segments b c and be which belong to ch(Q≥b) are replaced by the segments pc and pe
of ch(Q≥p). Since length(Q≥p) is equal to length(Q≥b)+ d(b, p) it is sufficient to show
that

d(c, p) + d(e, p) − d(b, c) − d(b, e) ≥ d(b, p)

holds, this is exactly the conclusion of Lemma A.1 in the appendix on page 18.
Since we can use the assumption length(Q≥p) ≤ per(Q≥p) and the fact ψ ≤ ϕ ≤ 90◦

the same argument holds also for Q≥a = Q and also for the case that more vertices of

13

ch(Q≥b) than only b and e do not reappear as vertices in ch(Q). This concludes the
proof. 2

In the following, for two points p and q let circp(q) denote the circle with center p
passing through q.

As an immediate consequence of Theorem 4.5, we have an upper bound of 2π for
the detour of self-approaching curves, because any such curve from point a to point b
must be contained in circb(a). The following theorem refines this argument to a better
bound.

Theorem 4.6 The detour of a self-approaching curve is not greater than

cmax := max
β∈[0.. π

2
]

2β + π + 2√
5 − 4 cos β

≈ 5.3331 . . .

Proof. Let a, f denote the first resp. last point of a self-approaching curve C . The
proof works as follows: We show that length(C)

d(a,f)
≤ cmax holds if the curve does not cross

the line segment af. If it does, we apply this bound for each subcurve between two
successive curve points on af and add up the lengths. Due to the self-approaching
property, the curve points on af appear in the same order as on C .

So for the rest of this section we may assume that IMC does not cross the line
segment af. In the proof of Theorem 4.5, we have seen in the first paragraph of
Case 2 that the whole of C lies inside a wedge at a of ϕ = 90◦. We choose such
a wedge consisting of two orthogonal halflines X and Y starting at a. W.l.o.g. we
assume that the initial part of C lies on the left side of the edge directed from a to
f , and, if necessary, we rotate such that the halfline on the other(right) side of af
touches C at a point e, see Figure 10. Let h and w be the height resp. width of the
bounding box of a and f according to rectangle with sides parallel to the wedge and
with diagonal af .

f

w

h

Y

X

e

a

C

Figure 10: Any self-approaching curve is contained in a wedge of 90◦.

We will construct a convex area, A, that contains C and we will show that the
perimeter of this area divided by d(a, f) =

√
h2 + w2 is bounded by cmax. Then from

Theorem 4.5, it follows that cmax bounds the detour length(C)
d(a,f)

.

14

This construction goes as follows, refer to Figure 11. First we know that C is
contained in the wedge at a, and C [a, e] is contained in circe(a) and C [e, f] is contained
in circf (e), due to the self-approaching property.

f

c
C

X

circe′(a)

c′

a

circf (e
′)

circe(a)

Y

A

e′ e

Figure 11: Curve C is contained in the constructed area A.

We also know that C [a, e] must avoid circf (e), but pass around it to reach e
because it must not cross af. We conclude that circf(e) is contained in circe(a).

Now, we will enlarge these circles to a certain extent. Instead of e, we use a
point e′ on X with d(a, e′) ≥ d(a, e), such that circe′(a) still contains circf (e

′) and
touches it in one point c′. This is possible because for every position of e′ on X with
d(a, e′) ≥ d(a, e), the whole circle circe′(a) is always on one side of Y , while circf (e

′)
must eventually cross l. Note that d(e′, a) = d(e′, c′) = d(c′, f) + d((f, e′) = 2d(f, e′)
holds, in other words the radius of circe′(a) equals the diameter of circf(e

′).
Now let c be the point at which curve C crosses f c′ first. We know that C [a, c] is

contained in circe(a) ⊆ circe′(a), C [c, f] is contained in circf(c) ⊆ circf(c
′) = circf (e

′).
So the curve C is included in the convex area A limited by e′a, the circular arc from
a to c′ about e′, and the halfcircle from c′ to e′ about f , see Figure 11.

We choose a scale such that d(f, c′) = 1. Let β be the angle between e′a and e′ c′,
see Figure 12. Then d(e′, c′) = 2 = d(e′, a), w = 2 − cos β and h = sinβ. The length
of the arc from a to c′ equals 2β while the halfcircle from c′ to e′ has length π.

Then the perimeter of the constructed convex areaA divided by d(a, f) =
√
h2 + w2

is given by the following function f in β.

f(β) :=
2β + π + 2√

sin2 β + (2 − cosβ)2
=

2β + π + 2√
5 − 4 cos β

15

1

1

f

e′

A

h

wcos β

c′

sinβ
a

2β

π

C

c

e
β

Figure 12: Measuring the perimeter of the convex area A.

The maximum value, cmax, of f(β) equals aproximately 5.3331 . . . for 0 ≤ β ≤ π/2
and is attained at βopt ≈ 11.22◦ with 8 cos βopt + 2 sin βopt(2βopt + π + 2) = 10. 2

Surprisingly, it turns out that there cannot be a smaller upper bound for self-
approaching curves.

Theorem 4.7 The upper bound cmax for the detour of self-approaching curves is
tight.

Proof. We construct a curve with a convex hull similar to the bounding area A in
Theorem 4.6.

As a first attempt we consider the curve in Figure 13. From the start point, a,
to the end, f , it consists of a circular arc of radius 2 and angle β, a half circle of
radius 1, and a line segment of length 1. This curve is self-approaching, its length
equals 2β + π+ 1 while d(a, f) =

√
5 − 4 cos β. The ratio takes on a maximum value

of approximately 4.38.

f

c

1

2
β

ae

Figure 13: This self-approaching curve has a detour of 4.38.

But there is some room for improvements in the last step, i. e. the line segment
from e to f . Instead of walking straight from e to f we use a sequence of pieces of
small cycloids. (A cycloid is known to be the orbit of a point on the boundary of a
rolling circle and it has another cycloid as its involute.) For an odd number n ∈ IN
we can fill a rectangle of height h and width w = 2nh/π with n successive congruent
pieces of cycloids such that they form a curve from the lower left to the upper right
corner, see Figure 14. Each piece is a cycloid generated by a circle of radius h/π

16

rolling on a vertical line, and each one is the involute of its successor. The resulting
curve is self-approaching, and its length is exactly 2w since the length of a piece is
twice its width.

2k k = 2h/π

2k

· · ·
e 2k · · ·

· · ·2kk

h

f

Figure 14: How to fill a rectangle of width w and height h with a self-approaching
curve of length 2w using pieces of cycloids.

a

f ′

fe′

e
1

β c

2

1 − h
h

Figure 15: Replacing the line segment by a rectangle that gives room for improvement.

Now let us replace the line segment in our first attempt by such a construction in
a rectangle of height h = 1

(2n/π)+1
and width w = 1 − h = 2nh/π, see Figure 15.

The curve consists of

• a circular arc about e′ of length 2β

• a circular arc about f of length π/2

• a circular arc about f ′ of length (1 − h)π/2 and

• a sequence of cycloids from e to f of overall length 2(1 − h).

We choose β = βopt from Theorem 4.6 and for n = 1, 3, 5 . . . we have a sequence of
self-approaching curves with a detour of at least

2βopt + π/2 + (1 − h)(π/2 + 2)√
5 − 4 cos βopt

which converges to cmax for n→ ∞ (i. e. h→ 0). 2

Actually, as n tends to infinity, one could think of the curve of Figure 14 as a thick
line segment of length 2, while its endpoints are only distance 1 apart. One might
wonder if a factor bigger than 2 can be achieved by a different technique. Note that
this is not possible as a direct consequence of Theorem 4.6.

17

5 A lower bound

A lower bound for any strategy for the kernel problem can be derived in the following
way.

Lemma 5.1 No strategy for the kernel problem can guarantee a detour of less
than

√
2.

s

v1 v2

Figure 16: Any strategy can be forced to make a detour of
√

2.

Proof. The polygon P shown in Figure 16 is a rectangular, isosceles triangle with
two small caves at the upper corners. We allow only two cases, the kernel may be
near the left corner, as shown in the picture, or near the right corner, i. e. if we flip
left and right corners in the picture.

The robot starts at the lower corner, s, and before reaching the line v1 v2 no
strategy can determine which of the two cases occurs. If v1 v2 is reached to the left of
its midpoint, then the kernel can be at the right corner and vice versa. But then a
detour of

√
2 is unavoidable. 2

By the way, the greatest detour of strategy CAB we know of is π+1, as shown in
Figure 17. However such a one cave polygon can be explored much more efficient at
a cost of 1.21 . . ., see [12].

sk

1
1

π − ε

ε

Figure 17: In this polygon, CAB achieves a detour of π−ε+1, and ε may be arbitrarily
small.

A Appendix

Lemma A.1 Let v be a point inside a triangle abc. We connect each vertex to v
using segments l1 = bv, r1 = cv, and z = av. Let l2 = ab and r2 = ac be two edges
of the triangle; see Figure 18. If the angle ϕ ≤ π between l1 and r1 is less than or
equal to π/2 then for the lengths of the segments l1 + r1 + z ≤ l2 + r2 holds.

18

l1

l2

ρ1λ1

λ2

r2

r1

a

cb

v

z

ϕ

ρ2

Figure 18: l1 + r1 + z ≤ l2 + r2 holds for ϕ ≤ π/2.

Proof. The assumption is obviously true for z = 0. Let z 6= 0. We have to prove the
inequality l2 − l1 + r2 − r1 ≥ z. Let λ1 ≤ π be the angle between l2 and z, λ2 ≤ π be
the angle between l1 and z, ρ1 ≤ π be the angle between r2 and z and ρ2 ≤ π be the
angle between r1 and z. Using the law of sines we substitute l1 with z sinλ1

sin(λ1+λ2)
and l2

with z sinλ2

sin(λ1+λ2)
. We transform r1 and r2 analogously and divide the whole expression

by z. So we have to show that

sinλ2 − sinλ1

sin(λ1 + λ2)
+

sin ρ2 − sin ρ1

sin(ρ1 + ρ2)
≥ 1

is true. We consider some simple transformations:

sinλ2 − sinλ1

sin(λ1 + λ2)
=

sinλ2 − sin((λ1 + λ2) − λ2)

sin(λ1 + λ2)

=
sinλ2 − sin(λ1 + λ2) cos λ2 + cos(λ1 + λ2) sinλ2

sin(λ1 + λ2)

= − cos λ2 +
(1 + cos(λ1 + λ2)) sin λ2

sin(λ1 + λ2)︸ ︷︷ ︸
(∗)

≥ − cos λ2

Note that (∗) ≥ 0 holds because of 0 ≤ λ1 + λ2 ≤ π. Similarly we have sin ρ2−sin ρ1

sin(ρ1+ρ2)
≥

− cos ρ2 so it is sufficient to show that − cos λ2 − cos ρ2 ≥ 1 is true. We conclude
λ2+ρ2

2
= π − ϕ

2
from λ2 + ρ2 + ϕ = 2π. Since λ2 and ρ2 are inner angles of a

triangle we know λ2, ρ2 ≤ π and from ϕ ≤ π/2 we conclude λ2, ρ2 ≥ π/2. Therefore
|λ2 − ρ2| ≤ π/2 is true. Now

− cos λ2 − cos ρ2 = −2 cos

(
λ2 + ρ2

2

)
cos

(|λ2 − ρ2|
2

)
≥ 1

19

holds since − cos
(

λ2+ρ2

2

)
= cos

(
ϕ
2

)
≥ cos

(
π
4

)
= 1√

2
and cos

(|λ2−ρ2|
2

)
≥ 1√

2
are

fulfilled. 2

References

[1] R. C. Buck. Advanced Calculus. McGraw-Hill, New York, 1978.

[2] R. Cole and M. T. Goodrich. Optimal parallel algorithms for polygon and point-
set problems. Algorithmica, 7:3–23, 1992.

[3] R. M. Corless, G. H. Gonnet, D. E. G. Hare, and D. J. Jeffrey. Lambert’s W
function in Maple. The Maple Techical Newsletter, Issue 9:12–22, 1993.

[4] H. T. Croft, K. J. Falconer, and R. K. Guy. Unsolved Problems in Geometry.
Springer-Verlag, New York, 1991.

[5] A. Datta and C. Icking. Competitive searching in a generalized street. In Proc.
10th Annu. ACM Sympos. Comput. Geom., pages 175–182, 1994.

[6] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environ-
ment. In Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 298–303,
1991.

[7] X. Deng, T. Kameda, and C. H. Papadimitriou. How to learn an unknown
environment I: the rectilinear case. Technical Report CS-93-04, Department of
Computer Science, York University, Canada, 1993.

[8] G. Dudek, K. Romanik, and S. Whitesides. Localizing a robot with minimum
travel. In Proc. 6th ACM-SIAM Sympos. Discrete Algorithms, pages 437–446,
1995.

[9] K. Ghosh and S. Saluja. Optimal on-line algorithms for walking with minimum
number of turns in unknown streets. Technical Report TCS-94-2, Tata Institute
of Fundamental Research, Bombay, 1994.

[10] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. A competitive strategy for
learning a polygon. In Proc. 8th Annual ACM-SIAM Symposium on Discrete
Algorithms, 1997.

[11] C. Icking. Motion and visibility in simple polygons. PhD thesis, Department of
Computer Science, FernUniversität Hagen, Germany, 1994.

[12] C. Icking, R. Klein, and L. Ma. How to look around a corner. In Proc. 5th
Canad. Conf. Comput. Geom., pages 443–448, Waterloo, Canada, 1993.

[13] R. Klein. Walking an unknown street with bounded detour. Comput. Geom.
Theory Appl., 1:325–351, 1992.

[14] J. M. Kleinberg. The localization problem for mobile robots. In Proc. 35th Annu.
IEEE Sympos. Found. Comput. Sci., 1994.

20

[15] J. M. Kleinberg. On-line search in a simple polygon. In Proc. 5th ACM-SIAM
Sympos. Discrete Algorithms, pages 8–15, 1994.

[16] D. T. Lee and F. P. Preparata. An optimal algorithm for finding the kernel of a
polygon. J. ACM, 26:415–421, 1979.

[17] A. López-Ortiz and S. Schuierer. Going home through an unknown neighbour-
hood. Technical report, Department of Computer Science, University of Water-
loo, Canada, 1994.

[18] G. Rote. Curves with increasing chords. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 115(1):1–12, 1994.

21

	Introduction
	Visibility in a polygon
	A strategy for the kernel problem
	A criterion for approaching the kernel
	The CAB strategy

	Self-approaching curves
	Definitions and properties
	CAB curves are self-approaching
	Analysing self-approaching curves

	A lower bound
	Appendix

