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In this lecture, we introduce the general framework of games. Congestion games, as introduced
in the last lecture, are a special case. The notion of pure Nash equilibria readily generalizes but
pure Nash equilibria might not exist. Therefore, we will introduce the concept of mixed Nash
equilibria, which always exist in games with finitely many players and finitely many strategies.

1 Normal-Form Game
All games that we will consider throughout this course can be represented as normal-form games.
We are following the standard notation, which is slightly different from the standard notation in
congestion games. Normally, this does not cause major confusion.

Definition 3.1. A (normal-form, cost-minimization) game is a triple (N , (Si)i∈N , (ci)i∈N ).
Here, N is the set of players, |N | = n, often N = {1, . . . , n}. For each player i ∈ N , Si is the
set of (pure) strategies of player i. The set S =

∏
i∈N Si is called the set of states or strategy

profiles. For each i ∈ N , ci : S → R is the cost function of player i. In state s ∈ S, player i has
a cost of ci(s).

Again, we let s−i = (s1, ..., si−1, si+1, ..., sn) denote a state s without the strategy si. This
notation allows us to concisely define a unilateral deviation of a player. For i ∈ N , let s ∈ S
and s′i ∈ Si, then (s′i, s−i) = (s1, . . . , si−1, s

′
i, si+1, . . . , sn).

One class of such games are congestion games. Here, the cost functions ci(s) have a particular
structure: They are defined via resources and delay functions.

Any game with two players with finitely many strategies can be described by two matrices
A = (as1,s2)s1∈S1,s2∈S2 and B = (bs1,s2)s1∈S1,s2∈S2 (bimatrix game). Player 1 (referred to as row
player) chooses a row; player two (column player) chooses a column. Their costs are given as
c1(s) = as1,s2 , c2(s) = bs1,s2 .

Example 3.2 (Congestion Game). A congestion game with two players can also be written as
a bimatrix game, see an example of a symmetric network congestion game below with three s-t
paths. As we see, the matrices will usually be huge.
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10 16 12

10 9 8
9 18 13

16 18 16
8 16 14

12 13 14

Example 3.3 (Battle of the Sexes). Suppose Angelina and Brad go to the movies. Angelina
prefers watching movie A, Brad prefers watching movie B. However, both prefer watching a
movie together to watching movies separately.
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A B
1 6

A
2 6

5 2
B

5 1

2 Pure Nash Equilibrium
The notion of best response and pure Nash equilibrium are defined exactly as in the case of
congestion games.

Definition 3.4. A strategy si is called a best response for player i ∈ N against a collection
of strategies s−i if ci(si, s−i) ≤ ci(s′i, s−i) for all s′i ∈ Si. A state s ∈ S is called a pure Nash
equilibrium if si is a best response against the other strategies s−i for every player i ∈ N .

So, a pure Nash equilibrium is stable against unilateral deviation. No player can reduce his
cost by only changing his only strategy.

Pure Nash equilibria need not be unique.

Example 3.5 (Battle of the Sexes). Recall the game from Example 3.3. We can find its pure
Nash equilibria (A,B) and (B,A) by marking best responses with boxes.

A B
1 6

A
2 6

5 2
B

5 1

Not every game has a pure Nash equilibrium.

Example 3.6 (Inspection Game). Consider a game between a train traveler and a ticket
inspector. The traveler can either (C)omply and buy a ticket before boarding the train or (D)efect
and not buy one. The inspector can decide to be (L)azy and not inspect or she can decide to
(I)nspect. The inspector prefers to inspect only if the traveller is not holding a ticket. The
traveller, in contrast, prefers to buy a ticket only if she will be inspected.

C D
15 0

L
0 10

15 60
I

1 6

Having marked best responses, we see that there is no cell (corresponding to a pure state) in
which both players are playing a best response simultaneously. Therefore, there is no pure Nash
equilibrium.
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3 Mixed Nash Equilibrium
We will now define a different equilibrium concept that generalizes pure Nash equilibria. Rather
than making a fixed (deterministic) choice, the players can randomize over their strategies.

Definition 3.7. A mixed strategy σi for player i is a probability distribution over the set of
pure strategies Si.

We will only consider the case of finitely many pure strategies and finitely many players. In
this case, we can write a mixed strategy σi as (σi,si)si∈Si with

∑
si∈Si

σi,si = 1. The cost of a
mixed state σ for player i is defined as the expected cost if we draw for each player i a strategy
according to distribution σi. Formally,

ci(σ) = Es1∼σ1,...,sn∼σn [ci(s)] =
∑
s1∈S1

· · ·
∑
sn∈Sn

σ1,s1 · . . . · σn,sn · ci(s) .

Any pure strategy si ∈ Si can also be represented as a mixed strategy by setting σi,si = 1
and σi,s′

i
= 0 for s′i 6= si. Therefore, effectively, we have now defined a larger strategy space. On

this space, best response and Nash equilibrium are just defined the same way.

Definition 3.8. A mixed strategy σi is a (mixed) best-response strategy against a collection of
mixed strategies σ−i if ci(σi, σ−i) ≤ ci(σ′i, σ−i) for all other mixed strategies σ′i. A mixed state σ
is called a mixed Nash equilibrium if σi is a best-response strategy against σ−i for every player
i ∈ N .

A key observation is that it is enough to only consider deviations to pure strategies.

Lemma 3.9. A mixed strategy σi is a best-response strategy against σ−i if and only if ci(σi, σ−i) ≤
ci(s′i, σ−i) for all pure strategies s′i ∈ Si.

Proof. The “only if” part is trivial: Every pure strategy is also a mixed strategy.
For the “if” part, let σ−i be an arbitrary mixed strategy profile for all players except for i.

Furthermore, let σi be a mixed strategy for player i such that ci(σi, σ−i) ≤ ci(s′i, σ−i) for all
pure strategies s′i ∈ Si.

Observe that for any mixed strategy σ′i, we have ci(σ′i, σ−i) =
∑
s′

i∈Si
σ′i,s′

i
ci(s′i, σ−i) ≥

mins′
i∈Si

ci(s′i, σ−i). Using mins′
i∈Si

ci(s′i, σ−i) ≥ ci(σi, σ−i), we are done.

This lemma has a very important consequence: If a pure strategy si is a best response against
pure strategies s−i in the sense of Definition 3.4 then it is also a best response against s−i in the
sense of Definition 3.8. So, it is well defined if we simply talk about “best responses”. For this
reason, every pure Nash equilibrium is also a mixed Nash equilibrium.

4 Mixed Best Responses as Probability Distributions over Pure
Best Responses

Let us now see a example of a mixed Nash equilibrium and how we can find it. We will make
use of the following lemma.

Lemma 3.10. A mixed strategy σi is a best-response strategy against σ−i if and only if every
strategy in the support of σi, i.e., every sj ∈ Si with σi,sj > 0, is a best response against σ−i.

Proof. First suppose σi is a distribution over pure best responses. Then for every pure strategy
s′i ∈ Si we have

ci(σi, σ−i) =
∑
si∈Si

σi,sici(si, σ−i) ≤
∑
si∈Si

σi,sici(s′i, σ−i) = ci(s′i, σ−i).



Algorithmic Game Theory, Summer 2019 Lecture 3 (page 4 of 5)

Now we can invoke Lemma 3.9 to conclude that σi is a best response to σ−i.
Next suppose σi is not a distribution over pure best responses. Then there exists strategies

si, s
′
i ∈ Si such that σi,si > 0 but ci(si, σ−i) > ci(s′i, σ−i). We construct distribution σ′i from σi

by increasing σi,s′
i
by σi,si and decreasing σi,si to zero. Then,

ci(σ′i, σ−i) < ci(σi, σ−i),

and so σi cannot be a best response.

As a consequence of this lemma, we can compute mixed Nash equilibria by choosing
probabilities for one player that will make the other player indifferent between his pure strategies.

Example 3.11 (Inspection Game). Recall the game from Example 3.6.

C D
15 0

L 1− p
0 10

15 60
I p

1 6
1− q q

We consider the case that both p and q are in (0, 1), meaning that both players mix both their
strategies. It is easy to see that otherwise the equilibrium property cannot hold. The lemma tells
us to compute probabilities (1− p, p) for the row player and (1− q, q) for the column player that
make the respective other player indifferent between the two strategies.

To determine the probabilities of the column player, we compute the expected costs for the
pure strategies of the row player, equate them, and solve for q:

crow(L, (1− q, q)) = crow(I, (1− q, q))
⇔ 0 · (1− q) + 10 · q = 1 · (1− q) + 6 · q

⇔ q = 1
5 .

Similarly, to determine the probabilities for the row player:

ccol(C, (1− p, p)) = ccol(D, (1− p, p))
⇔ 15 · (1− p) + 15 · p = 0 · (1− p) + 60 · p

⇔ p = 1
4 .

We obtain the mixed Nash equilibrium in which the row player mixes between L and I
with probabilities (3/4, 1/4) and the column player mixes between C and D with probabilities
(4/5, 1/5).

There is also a nice pictorial interpretation of this argument. For each player, the expected
cost of a strategy depends on the choice of probabilities of the respective other player. We find
the mixed Nash equilibrium at the respective intersection of both lines.
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One may wonder at this point whether it is actually reasonable to assume that player roll
dice when making their decisions. An equivalent interpretation is: There is a population of
inspectors, 25% of them inspect, 75% do not. Among the travelers, 80% buy a ticket, 20% do
not. Now, an inspector and an traveler are matched at random. On average, they are happy
with their choice.
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