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In the previous lectures we adopted a somewhat passive perspective: We considered a given
game, and analyzed strategic outcomes of this game. So in some sense we assumed the rules of
the game to be fixed. What if we could change the rules of the game in order to achieve some
objective in strategic equilibrium?

This is the grand question of a field called mechanism design, which we will explore next.
As a warm-up we will consider single-item auctions. We will identify an auction mechanism
with great properties; these properties will henceforth serve as a gold standard against which
we will evaluate our solutions.

1 A Motivating Example

In the lecture I challenged you to bid in two different auctions. The items that I auctioned were
two bars of chocolate. These were so-called sealed-bid auctions. Before running the auction I
publicly announced that I would determine the winner and his/her payment according to the
following rules:

(Sealed-Bid) First-Price Auction

1. Write your bid bi on one side of a piece of paper, fold it, write your name on it, and hand
it to me.

2. Once I have received all bids, I will determine the winner as the the bidder with the
highest bid and make him/her pay what he/she has bid.

(Sealed-Bid) Second-Price Auction

1. Write your bid bi on one side of a piece of paper, fold it, write your name on it, and hand
it to me.

2. Once I have received all bids, I will determine the winner as the the bidder with the
highest bid and make him/her pay the next highest bid.

In both cases, I announced that in the case of a tie, i.e., more than one highest bid, I will
break ties lexicographically favoring Anna over Paul and so on.

The purpose of this experiment was to get you to think about what to bid. What was your
reasoning? Did you bid what the chocolate was worth to you? Or did you bid less, hoping to
make a bargain? Did you anticipate what the others would bid or not? Did your reasoning
depend on the auction format?

2 A Basic Model

In order to reason about what to do in an auction, we need a model of bidder behavior. We
will assume that there is a set of n players N and a single item for sale. Each player i ∈ N has
a willingness-to-pay (or value) vi ∈ R≥0. We assume players seek to maximize their utility. If
for a given bid profile b, player i ∈ N wins he/she has a utility of

ui(b, vi) = vi − bi (first price)

ui(b, vi) = vi −max
j 6=i

bj (second price)

and he/she has a utility of ui(b, vi) = 0 if he/she loses.
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3 First-Price Auction

As you probably have realized yourself, bidding in a first-price auction is not easy. Of course,
you could just have bid what the chocolate bar was worth to you. But then, no matter what your
colleagues were to bid, you would never make a bargain or positive utility in the terminology
that we just defined.

How would you bid if your goal was to maximize your utility? Wouldn’t you shade your bid
in order to achieve a lower price? But by how much should you shade your bid? The problem
is that this depends on what you know about the bids of the others!

In the simplest model, the complete information model, one assumes that the players know
each other’s values.

Observation 10.1. In the first-price auction, the state in which all players bid their true value
is generally not a Nash equilibrium.

Observation 10.2. Consider a first-price auction in which ties are broken in favor of a player
of maximum value. Then there is the following pure Nash equilibrium b. Let i be this player of
highest value and set bi = maxj 6=i vj and bj = vj for j 6= i.

4 Second-Price Auction

It turns out that in the second-price auction bidding is much easier. A bit of thinking reveals
that bidding your true value is not only a Nash equilibrium. It is, in fact, the best you can do,
independent of what your colleagues bid.

Definition 10.3. A bid profile b is a dominant strategy equilibrium for value profile v if for
each player i ∈ N bid bi is a (weakly) dominant strategy. A bid bi is a (weakly) dominant
strategy for player i with value vi if for all possible bids b′i by that player and all possible bids
b−i of the other players, ui((bi, b−i), vi) ≥ ui((b′i, b−i), vi).

Theorem 10.4 (Vickrey, 1961). In a second-price auction, for each player i ∈ N it is a
dominant strategy to bid truthfully.

Proof. Fix a player i, his/her value vi, and the bids b−i of the other players. We need to show
that player i’s utility is maximized by setting bi = vi.

Let bmax = maxj 6=i bj denote the highest bid by a player other than i. Note that even though
there is an infinite number of bids that i could make, only two distinct outcomes can result.
For this we can without loss of generality assume that player i loses if he/she bids bi = bmax.
In this case if bi ≤ bmax, then i loses and receives utility 0. If bi > bmax, then i wins at price
bmax and receives utility vi − bmax.

We now consider two cases. First, if vi ≤ bmax, the highest utility that bidder i can get is
max{0, vi − bmax} = 0, and he/she achieves this by bidding truthfully (and losing). Second, if
vi > bmax, the highest utility that bidder i can get is max{0, vi− bmax} = vi− bmax, and he/she
achieves this by bidding truthfully (and winning).

Observation 10.5. In a second-price auction, if each player bids his/her true value, then
he/she never has negative utility.

5 Mechanism Design with Money

The single-item auction is a mechanism-design problem with money. More generally, there is
a set N of n players (or agents) that interacts with a mechanism to select a feasible outcome.
The set of outcomes is denoted by X.
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Each agent i has a private valuation function vi : X → R and has a set Bi of possible bids.
We let B = B1 × . . . × Bn denote the set of all bid profiles. A mechanism M = (f, p) consists
of an outcome rule f : B → X and a payment rule p : B → Rn. It asks the players to report
their bids, which we will denote by b, and computes from it an outcome f(b) and a vector of
payments (p1(b), . . . , pn(b)) that the agents have to make to the mechanism.

We make the standard assumption of quasi-linear utilities. That is, player i’s utility if her
valuation is vi and the bids are b is uMi (b, vi) = vi(f(b)) − pi(b). When it is clear from the
context, which mechanism we are referring to we will drop the superscript M . Sometimes we
also drop the valuation function vi.

Example 10.6 (Single-Item Auction). In a single-item auction n bidders compete for the as-
signment of an item. Each player can get the item or not, so feasible assignments are vectors
x ∈ X ⊆

∏
iXi = {0, 1}n with

∑
i xi = 1, where we interpret xi = 1 as bidder i gets the item.

We overload notation and write vi for both the function X → R as well as the value. This way,
vi(x) = vi · xi. Our goal is to allocate the item to the bidder with the highest value.

Note that in our definition so far, the bids can be arbitrary. In many cases, it makes sense
that the bids exactly correspond to possible valuations. So, letting Vi denote the set of all
possible valuation functions for player i, we would set Bi = Vi. Such a mechanism is called a
direct mechanism.

Example 10.7. The first price auction is a direct mechanism, in which Vi = Bi = R. Given a
bid vector b, the allocation function f assigns the item to a bidder with the highest bid. That is,
it returns an allocation x that maximizes

∑
i bi(x). The payment function is simply pi(b) = bi

if (f(b))i = 1 and pi(b) = 0 otherwise, or equivalently pi(b) = bi(f(b)), again interpreting bi as
a function X → R.

The basic dilemma of mechanism design is that the mechanism designer (think of a govern-
ment or company) wants to optimize some global objective such as the social welfare

∑
i∈N vi(x)

by computing an allocation x based on the bids b, while the players choose their bids bi so as
to maximize their utilities ui(b, vi).

Example 10.8 (Combinatorial Auction). There are again n bidders but now there is a set M of
m item. Each bidder i has a privation valuation function vi : 2M → R≥0, defining a non-negative
value of each subset of items. The set of feasible allocations is given as X = {(S1, . . . , Sn) |
Si ⊆M,Si ∩ Si′ = ∅ for i 6= i′}.

We will consider direct mechanisms, in which each bidder reports her vi, as well as indirect
mechanisms, in which, for example, all items are sold separately.

Example 10.9 (Sponsored Search Auction). In a sponsored search auction we have n bidders
and k positions. Each position has an associated click-through rate αj, where we assume that
positions are sorted such that α1 > α2 > · · · > αk > 0. Feasible allocations are x ∈ X for which
xi ∈ {0, αk, . . . , α1} for all i and for i 6= j we can only have xi = xj if xi = xj = 0. The
valuation of player i is given as vi(x) = vi · xi for some vi ≥ 0.

Example 10.10 (Scheduling on Related Machines). There are n machines, each of which is a
player, and each player has a private speed si. The inverse of the speed ti = 1/si is the time that
machine i takes to process a job of unit length. There are m jobs with loads `1, . . . , `m, which
need to be allocated to the machines. An allocation induces a work load W1, . . . ,Wn for each
machine. Player i’s cost for processing work load Wi is Wi · ti, so the valuation for load vector
W is vi(W ) = −Wi · ti. Each machine is interested in maximizing ui(b) = vi(W (b)) − pi(b),
while the mechanism designer wants to minimize the makespan maxiWi · ti. Note that now
payments will usually negative because the mechanism compensates the players for the cost they
incur.
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6 Desirable Properties of Auctions

We have seen a remarkable property of the second-price auction, or Vickrey auction: To max-
imize the utility, it is enough to bid your true value. We can generally state this property for
direct mechanisms as follows.

Definition 10.11. A direct mechanism M = (f, p) is called dominant-strategy incentive com-
patible (DSIC) (or just truthful), if for each player i bidding bi = vi is a weakly dominant
strategy. That is, for all i ∈ N , vi ∈ Vi, and all b ∈ V it holds that

uMi ((vi, b−i), vi) ≥ uMi ((bi, b−i), vi) .

However, truthfulness is not the only requirement that we have in a mechanism. For example,
not allocating the item at all has the same property. If all bidder bid truthfully, then it also
allocates the item to one of the bidders who has the maximum value. Furthermore, it is very
easy to compute the allocation and the payments.

So, overall, we have:

1. Strong incentive guarantees. The Vickrey auction is dominant strategy incentive compat-
ible (DSIC), i.e., truthtelling is a dominant strategy equilibrium.

2. Strong performance guarantees. At equilibrium, the Vickrey auction maximizes social
welfare

∑
i∈N vi(x).

3. Computational efficiency. The Vickrey auction can be computed in polynomial time.

We will see that when trying to generalize this result to more complex settings, we often
find that obtaining all three properties at once is impossible and we will have to relax one or
more of these goals.
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