Due date: In the lecture on 17th April 2019, 12:15

Algorithmic Game Theory and the Internet

Summer Term 2019

Exercise Set 2

Exercise 1: (2 Points)

Rewrite the depicted symmetric network congestion game with two players as a bimatrix game like in Example 3.2 of the third lecture. Why is it sufficient to state only the upper or lower triangular matrix?

Exercise 2: (2+1+3 Points)

- a) Specify the payoff matrix for the well-known game rock-paper-scissors¹. Assume that winning has a cost of -1, losing a cost of 1, a tie a cost of 0.
- b) Mark the best responses with boxes. Do we have a pure Nash equilibrium?
- c) Determine a mixed Nash equilibrium.

Exercise 3: (3+2 Points)

Consider the bimatrix game Battle of the Sexes given in Example 3.3 of the third lecture.

- a) Compute a mixed Nash equilibrium by choosing probabilities for one player that will make the other player indifferent between his pure strategies (see Example 3.11).
- b) Determine the probabilities of the mixed Nash equilibrium graphically by plotting the players' expected costs.

Exercises 4 and 5 on the next page.

¹https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors

Exercise 4: (4 Points)

We define a strategy $s_i \in S_i$ of a normal-form, cost-minimization game to be *strictly dominated*, if there exists a strategy s_i' such that $c_i(s_i', s_{-i}) < c_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$. Prove that for all mixed Nash equilibria σ , there is no player $i \in \mathcal{N}$ with a mixed strategy σ_i such that $\sigma_{i,s_i} > 0$ for a strictly dominated strategy $s_i \in S_i$.

Exercise 5: (3 Points)

Have a look at the proof of Nash's Theorem (4.3) in which normal form payoff-maximization games are considered. Let $\mathcal{N} = \{1, \ldots, n\}$ and $S_i = \{1, \ldots, m_i\}$ for all $i \in \mathcal{N}$. The set of mixed states X can be considered as a subset of \mathbb{R}^m with $m = \sum_{i=1}^n m_i$.

Show that X is convex and compact.