Algorithms and Uncertainty

Summer Term 2021

Exercise Set 8

Exercise 1:

(4 Points)Consider the following explore-exploit algorithm. In the first $\frac{T}{2}$ steps (so $k = \frac{T}{2n}$), we explore. Afterwards, we exploit the most promising arm. Use the approach from Lecture 18 to derive an upper-bound for the expected regret of this algorithm.

Exercise 2:

(8 Points) Use the one-sided version of Hoeffding's inequality to show a regret bound for UCB1 of

•

 $\sum_{i \neq i^*} \frac{4 \ln T}{\Delta_i} + 2\Delta_i$. The one-sided version of Hoeffding's inequality is as follows: Let Z_1, \ldots, Z_N be independent random variables such that $a_i \leq Z_i \leq b_i$ with probability 1. Let \overline{Z} $\frac{1}{N}\sum_{i=1}^{N}Z_{i}$ be their average. Then for all $\gamma \geq 0$

$$\Pr\left[\bar{Z} - \mathbf{E}[\bar{Z}] \ge \gamma\right] \le \exp\left(-\frac{2N^2\gamma^2}{\sum_{i=1}^N (b_i - a_i)^2}\right)$$

Hint: Note that the one-sided version of Hoeffding's inequality also implies a bound on $\Pr\left[\bar{Z} \le \mathbf{E}[\bar{Z}] - \gamma\right].$