Exercise 1:

A connection game is a congestion game with \(n \) agents and an undirected graph \(G = (V, E) \). Every agent \(i \) is associated with a subset of vertices \(V_i \subseteq V \). The set of strategies \(\Sigma_i \) consists of all connected, acyclic subgraphs \(G'_i \) with \(V'_i = V_i \) and \(E'_i \subseteq (E \cap (V_i \times V_i)) \), for every player \(i \). Every edge \(e \) is assigned a delay function \(d_e(n_e) : \{1, ..., n\} \rightarrow \mathbb{Z} \), where \(n_e \) is the number of agents \(i \) selecting a subgraph \(G'_i \) with \(e \in E'_i \).

Exercise 1: (2+5 Points)

A connection game is a congestion game with \(n \) agents and an undirected graph \(G = (V, E) \). Every agent \(i \) is associated with a subset of vertices \(V_i \subseteq V \). The set of strategies \(\Sigma_i \) consists of all connected, acyclic subgraphs \(G'_i \) with \(V'_i = V_i \) and \(E'_i \subseteq (E \cap (V_i \times V_i)) \), for every player \(i \). Every edge \(e \) is assigned a delay function \(d_e(n_e) : \{1, ..., n\} \rightarrow \mathbb{Z} \), where \(n_e \) is the number of agents \(i \) selecting a subgraph \(G'_i \) with \(e \in E'_i \).

a) Consider the above instance of a connection game with two players. The vertices in \(V_1 \) are indicated in orange, while the vertices in \(V_2 \) are marked in blue.

Let the initial strategy of player 1 be given by the subgraph \(G'_1 \) with edges \(E'_1 = \\{\{v_1, v_3\}, \{v_1, v_4\}, \{v_2, v_3\}\} \).

Player 2 chooses subgraph \(G'_2 \) with edges \(E'_2 = \\{\{v_1, v_5\}, \{v_2, v_5\}, \{v_4, v_5\}\} \) as his strategy.

Perform best-response improvement steps until a pure Nash equilibrium is reached. Player 1 should deviate first.
b) Prove: Every sequence of best-response improvement steps in a connection game converges in $O(n^2 \cdot |E| \cdot |V|)$ many steps.

Hint: You can use the following property without proving it. Let G' be the strategy of agent i in state S, and let G'' be a best response of i for S_{-i}. Then, there exists a transforming sequence from G' to G'', where in every step, one edge $e' \in (E' \setminus E'')$ is exchanged by an edge $e'' \in (E'' \setminus E')$. For each step, the resulting graph is a feasible strategy for agent i. In particular, the delay is (weakly) reduced in every step.

Exercise 2:
(1+3+2 Points)

In a consensus game, we are given an undirected graph $G = (V, E)$ with vertex set $V = \{1, \ldots, n\}$. Each vertex $i \in V$ is a player and her action consists of choosing a bit $b_i \in \{0, 1\}$. Let $N(i) = \{j \in V \mid \{i, j\} \in E\}$ denote the set of neighbors of player i, i.e., all players j connected to i via an edge. Furthermore, let $\vec{b} = (b_1, \ldots, b_n)$ be the vector of players’ choices.

The loss $D_i(\vec{b})$ for player i is the number of neighbors that she disagrees with, i.e.,

$$D_i(\vec{b}) = \sum_{j \in N(i)} |b_j - b_i|.$$

a) Calculate the loss D_i of player 1 for the actions depicted in the graph above.

b) Show that a consensus game represented as an undirected Graph G can also be modeled as a congestion game Γ. To this end, specify the tuple $\Gamma = (N, R, (\Sigma_i)_{i \in N}, (d_r)_{r \in R})$ and show that the loss D_i coincides with the cost c_i.

c) Prove that in a congestion game modeling a consensus game with $|V| = n$ players all improvement sequences have length $O(n^2)$.