An Improved Algorithm for the Min-max k Tree Cover Problem

Aaron Weinmann
s6aawein@uni-bonn.de

November 22, 2022
0. Short Introduction

1. 4-approximation Algorithm

2. 3-approximation Algorithm

2a. Proof Sketch

(3. Related Problem: BTC)
Part 0: Introduction and Preliminaries
Nurse Station Location Problem

- We can relate this to the Nurse Station location problem:
- How to distribute the nurses in a hospital, s.t. the longest morning visit route is minimized
- TSP with k salesmen
- MSTs for constant factor approximation?
Min-Max k-Tree Cover Problem (MMkTC)

Tree Cover

Let $G = (V, E)$ be an undirected graph, $w : E \rightarrow \mathbb{Z}^+$ a weight function. A set T_1, T_2, \ldots, T_k of subtrees of G is called a *tree cover of G* if every vertex of V appears in at least one T_i.

Min-Max k-tree Cover Problem (MMkTC)

Given a weighted graph G and a positive integer k, find a tree cover of size k, s.t. the weight of the largest tree in the cover is *minimized*.

- NP-complete (Even et al.’03)
- 4-approximation algorithm exists (Even et al.’03)
- 3-approximation algorithm exists (Khani et al.’14)
Greedy 4-approximation for MMkTC

- Guess λ as value for optimal solution with binary search
- Delete edges $> \lambda$
- Find MSTs on connected components
- Split each MST into trees with weight in range $[2\lambda, 4\lambda]$
4-approximation example:

An arbitrary weighted undirected graph:
4-approximation example:

Guess a λ and delete edges $> \lambda$:
4-approximation example:

Delete edges $> \lambda$:

![Graph](image_url)
4-approximation example:

Find MSTs on connected components:
4-approximation example:

Split MSTs into trees with weight in $[2\lambda, 4\lambda]$
4-approximation example:

Split MSTs into trees with weight in $[2\lambda, 4\lambda]$
4-approximation example:

Split MSTs into trees with weight in \([2\lambda, 4\lambda]\)
4-approximation example:

Split MSTs into trees with weight in \([2\lambda, 4\lambda]\)

combine light subtrees into medium tree
Introducing:

An improved 3-approximation algorithm for the MMkTC Problem
Idea:

INPUT
- $G = (V, E)$: weighted, undirected graph
- λ: guess for the value of the optimal solution OPT

OUTPUT
- If $\lambda \geq OPT$: $S = \{S_1, \ldots, S_k\}$: k-tree cover, where $w(S_i) \leq 3\lambda \ \forall S_i$
- If $\lambda < OPT$: adjust λ
General Strategy:

- Delete all edges e with $w(e) > \frac{\lambda}{2}$
- Classify CCs into light ($W_T(C) \leq \lambda$) and heavy ($W_T(C) > \lambda$)
- Decide for each light component C:
 a) Take C into S
 b) Connect C to another light component and add to S
 c) Attach C to a heavy component
- Split heavy components in not too many small trees
Problem: How do we decide this?

⇒ Build an auxiliary graph H after deleting edges with weight $> \frac{\lambda}{2}$:

Graph $H(G, a, b)$

- **V:**
 - l regular (light) nodes v_1, \ldots, v_l
 - a dummy (null) nodes
 - b dummy (heavy) nodes

- **E:**
 - e_{v_i, v_j} with weight 0 iff $\frac{\lambda}{2} < d(C_i, C_j) \leq \lambda$ in G.
 - Between all null nodes and all regular nodes with weight 0.
 - If $A(C_i)$ finite, connect v_i to all heavy nodes with weight $A(C_i)$.

Weight of Attachment $A(C_i)$

$A(C_i)$ minimum weight of attaching an MST of C_i to a heavy component.
Example:

Undirected graph:
Example:

Delete all edges e with $w(e) > \frac{\lambda}{2}$:

\[
\begin{array}{c}
\lambda < w(e) \\
\lambda/2 < w(e) \leq \lambda \\
w(e) \leq \lambda/2
\end{array}
\]
Example:

Delete heavy edges:
Example:

Classify CCs:

heavy components

light components
Example:

Build auxiliary graph H on light components:

$H(G, a=0, b=0)$
Example:

Add edges if light CCs were connected with weight $\frac{\lambda}{2} < \cdots \leq \lambda$:

\[
H(G, a=0, b=0)
\]
Example:

Add *null nodes*:

\[H(G, a=1, b=0) \]
Example:

Add *heavy* nodes:

$$H(G, a=1, b=1)$$
Example:

Add *heavy* nodes:

H(G, $a=1$, $b=2$)
Example:

Add heavy nodes:

$H(G, a=1, b=3)$
Finally: Pseudocode
Algorithm 1 MMkTC Algorithm

1: Delete all edges with weight more than $\frac{\lambda}{2}$; let C_1, \ldots, C_{l+h} be the set of l light and h heavy components created.

2: for $a : 0 \rightarrow l$, $b : 0 \rightarrow l$ do
 (i) $S \leftarrow \emptyset$
 (ii) Construct graph $H(G, a, b)$
 (iii) Find \textbf{minimum perfect matching} on H; or break.
 (iv) \textbf{Attach} some light-components C_i to its \textit{nearest heavy component} based on match with heavy node.
 (v) \textbf{Decompose} heavy components using \textit{Lemma 3} and add the obtained trees to S.
 (vi) Add MST of C_i to S, based on match with \textit{null} node.
 (vii) Join C_i and C_j with edge and add ST to S, based on match with \textit{regular} node.
 (viii) If $|S| \leq k$ then return S.

3: end for

4: return failure
Proof Sketch
Proof Sketch:

Theorem:
The algorithm finds a 3-approximation for the MMkTC problem

Assume in the following $\lambda \geq OPT$:

I: Bound on the size of the trees
 a) Finding $\lambda \geq OPT$
 b) Every tree in S has weight $\leq 3\lambda$

II: The algorithm returns a set $|S| \leq k$

III: The S covers V completely

IV: Remarks on running time
Proof Sketch:

Theorem:

The algorithm finds a 3-approximation for the MMkTC problem

Assume in the following $\lambda \geq \text{OPT}$:

I: **Bound on the size of the trees**
 a) **Finding** $\lambda \geq \text{OPT}$
 b) Every tree in S has weight $\leq 3\lambda$

II: The algorithm returns a set $|S| \leq k$

III: The S covers V completely

IV: Remarks on running time
Finding λ

Assume our algorithm is correct:

- If $\lambda \geq \text{OPT}$ we get a solution $\leq 3\lambda$
- If $\lambda < \text{OPT}$ we get an error

How does this result in a 3-approximation for OPT?
Finding λ

Assume our algorithm is correct:

- If $\lambda \geq OPT$ we get a solution $\leq 3\lambda$
- If $\lambda < OPT$ we get an error

How does this result in a 3-approximation for OPT?

Binary search on the interval $[0, \sum_{e \in E} w(e)]$!
Proof Sketch:

Theorem:
The algorithm finds a 3-approximation for the MMkTC problem

Assume in the following $\lambda \geq OPT$:

I: Bound on the size of the trees
 a) Finding $\lambda \geq OPT$
 b) Every Tree in S has weight $\leq 3\lambda$

II: The algorithm returns a set $|S| \leq k$

III: The S covers V completely

IV: Remarks on running time
Decision on light components:

Remember that we use a perfect matching on H for our decisions:

(i) Construct graph $H(G, a, b)$
(ii) Find \textit{minimum perfect matching} on H; or break.
(iii) Attach some light-components C_i to its nearest heavy component based on match with heavy node.
(iv) Decompose heavy components using \textit{Lemma 3} and add the obtained trees to S.
(v) Add MST of C_i to S, based on match with \textit{null} node.
(vi) Join C_i and C_j with edge and add ST to S, based on match with \textit{regular} node.
Matching on H:

Find minimum perfect matching on H:

$H(G, a=2, b=1)$
Matching on H:

Join regular pairs:

H(G, a=2, b=1)
Matching on H:

Insert directly into S if matched to $null$ node:

$H(G, a=2, b=1)$
Matching on H:

Attach to closest heavy component if matched to heavy node:

$$H(G, a=2, b=1)$$

join CCs and add to S

Add to "closest" heavy component

Add to S

- regular node
- null node
- heavy node
Every Tree in S has weight $\leq 3\lambda$:

Recall the algorithm:

1. **Decompose** heavy components using Lemma 3 and add the obtained trees to S.
2. Add MST of C_i to S, based on match with *null* node.
3. Join C_i and C_j with edge and add ST to S, based on match with *regular* node.

Trees are added in the following steps:

- **(v)**: Decompose to weight $\leq 3\lambda$ (bound on number of trees later)
- **(vi)**: $W_T(C_i) \leq \lambda$
- **(vii)**: $W_T(C_i) + W_T(C_j) + w(e) \leq \lambda + \lambda + \lambda = 3\lambda$

(by definition of H)

This is only based on the assumption that we actually find a perfect matching!
Proof Sketch:

Theorem:
The algorithm finds a 3-approximation for the MMkTC problem

Assume in the following $\lambda \geq \text{OPT}$:

I: Bound on the size of the trees
 a) Finding $\lambda \geq \text{OPT}$
 b) Every tree in S has weight $\leq 3\lambda$

II: The algorithm returns a set $|S| \leq k$

III: The S covers V completely

IV: Remarks on running time
Existence of Perfect Matching

Show the existence of suitable values for a and b:

- Construct an H' based on an optimal solution $OPT = \{ T_1, \ldots, T_k \}$:
 - After Step 1, each T_i is in at most 2 components
 - k_l "light" trees (only light comp.)
 - k_h "heavy" trees (only heavy comp.)
 - k_b "bad" trees (one light, one heavy comp.)
 - Calculate maximum matching M on H'

$H' = (V', E')$

V': v'_i corresponding to each light component

E': Add edge for every light T_i (even loops)
Construction of H':

Recall Graph from earlier slides:
Construction of H':

Consider Optimal Solution OPT:
Construction of H':

Classify:

![Diagram of interconnected circles labeled as light trees.](image-url)
Construction of H':

Classify:

- **Heavy trees**
- **Light trees**
Construction of H':

Classify:

- Heavy trees
- Bad trees
- Light trees
Construction of H':

Look at light components:
Construction of H':

Ignore "bad" components:
Construction of H':

Vertices for each light comp.:
Construction of H':

Edges corresponding to OPT:
Construction of H’:

Edges corresponding to OPT:
Construction of H':

Edges corresponding to OPT:
Construction of H':

Edges corresponding to OPT:
Construction of H':

Find maximum matching M
Construction of H':

Recall H:
Construction of H':

Heavy nodes (b nodes) for set of isolated nodes I:
Construction of H':

Null nodes (a nodes) for set of non-isolated, non-matching U
Construction of H':

Build perfect matching in H:
Existence of Perfect Matching

- Consider iteration where we have $a = |U|$ null nodes and $b = |I|$ heavy nodes

Lemma

In the iteration where $a = |U|$ and $b = |I|$ the algorithm computes a minimum perfect matching on H whose cost can be bounded by the sum of all finite $A(C_i)$

Proof: Match all light components according to M if possible, leaving only I and U. Every $v_i \in I$ can be matched to a null node in H, every $v_u \in U$ to a heavy node with weight $A(C_u)$. \square
Upper Bound on Number of Trees:

Pseudocode:

(vi) Add MST of C_i to S, based on match with null node.
(vii) Join C_i and C_j with edge and add ST to S, based on match with regular node.

- Recall: In Steps (vi) and (vii), we add $|U| + |M| \leq k_l$ trees to S
- Left to show: In Step (v), we add at most $k_h + k_b$ trees to S
Upper Bound for Step (v):

Recall Step (v):

(iv) **Attach** some light-components C_i to its nearest heavy component based on match with heavy node.

(v) **Decompose** heavy components using Lemma 3 and add the obtained trees to S.

- similar to 4-approximation algorithm
- need upper bound for spanning tree of heavy components:

$$
\sum_{1 \leq i \leq s} A(C_{l_i}) + \sum_{l+1 \leq i \leq l+h} W_T(C_i) \leq (k_h + k_b) \cdot \frac{3}{2} \lambda - h \frac{\lambda}{2}
$$

⇒ can split heavy CCs in $(k_h + k_b)$ trees with maximum weight 3λ

⇒ In total at most $k_l + k_h + k_b = k$ trees in S
Proof Sketch:

Theorem:
The algorithm finds a 3-approximation for the MMkTC problem

Assume in the following $\lambda \geq OPT$:

I: Bound on the size of the trees
 a) Finding $\lambda \geq OPT$
 b) Every tree in S has weight $\leq 3\lambda$

II: The algorithm returns a set $|S| \leq k$

III: The S covers V completely

IV: Remarks on running time
S covers V completely

Trivial:
- Every light component is inserted into S or
- gets attached to a heavy component which we split into trees
Proof Sketch:

Theorem:
The algorithm finds a 3-approximation for the MMkTC problem.

Assume in the following $\lambda \geq OPT$:

I: Bound on the size of the trees
 a) Finding $\lambda \geq OPT$
 b) Every tree in S has weight $\leq 3\lambda$

II: The algorithm returns a set $|S| \leq k$

III: The S covers V completely

IV: Remarks on running time
Remarks on running time

Algorithm 1 MMkTC Algorithm

1: Delete all edges with weight more than $\frac{1}{2}$; let C_1, \ldots, C_{l+h} be the set of l light and h heavy components created.

2: for $a : 0 \rightarrow l$, $b : 0 \rightarrow l$ do

 (i) $S \leftarrow \emptyset$

 (ii) Construct graph $H(G, a, b)$

 (iii) Find *minimum perfect matching* on H; or break.

 (iv) **Attach** some light-components C_i to its nearest heavy component based on match with *heavy* node.

 (v) **Decompose** heavy components using *Lemma 3* and add the obtained trees to S.

 (vi) Add MST of C_i to S, based on match with *null* node.

 (vii) Join C_i and C_j with edge and add ST to S, based on match with *regular* node.

 (viii) If $|S| \leq k$ then return S.

3: end for

4: return failure
A 2.5-approximation algorithm for BTC
Bounded Tree Cover Problem (BTC)

BTC

For an undirected graph $G = (V, E)$ with a weight function $w : E \rightarrow \mathbb{Z}$ and a parameter λ, find a tree cover with minimum number of trees s.t. the weight of every tree in the cover is at most λ.

Main Differences:
- Delete edges with weight $> \lambda/4$
- No more guessing λ
Sources:
