Please not that this Wednesday (November 1) is a public holiday, so there will be only one tutorial on Thursday this week.

If you want to hand in your solutions for this problem set, please send them via email to anna.heuser@uni-bonn.de by Monday evening – make sure to send a pdf-file which contains your name and your email address. Of course, submitting solutions in groups is also possible.

If you would like to present one of the solutions in class, please also send an email to anna.heuser@uni-bonn.de containing the task which you would like to present and in which of the tutorials you would like to do so. Deadline for the email is Monday, 10:00 pm. Please note that the tasks will be allocated via a first-come-first-served procedure, so sending this email earlier than Monday evening is highly recommended.

Exercise 1:

(1+4 Points)

Consider the following randomized algorithm for Online Bipartite Matching:
Whenever a vertex $r \in R$ is revealed, let L_r be the set of currently unmatched neighbors of r. Then choose any $l \in L_r$ uniformly at random and match r to l.

(a) Explain the difference between this algorithm and the Ranking Algorithm from Lecture 7.

(b) We are given an instance of Online Bipartite Matching with n offline nodes ℓ_1, \ldots, ℓ_n and n online nodes that appear in order r_1, \ldots, r_n. For every $i \in [n]$, r_i is connected to ℓ_i. Additionally for every $i \in \left[\frac{n}{2}\right]$, r_i is connected to every node in $\{\ell_{\frac{i}{2}+1}, \ldots, \ell_n\}$. Show that the algorithm achieves an expected competitive ratio of at most $\frac{1}{2} + \frac{O(\log n)}{n}$ on this instance.

Exercise 2:

(3+4 Points)

(a) Suppose a tourist visits Bonn and wants to try out all the different restaurants in the city. So every evening she uniformly at random picks one of the n restaurants. Show that the expected number of days she needs for visiting every restaurant at least once is $\Theta(n \log n)$.

Hint: You can use that, when performing a sequence of independent trials with success rate p, the expected number of trials you need until your first success is $\frac{1}{p}$.
(b) Now we have a set of memory items P of size n and a cache that can store up to k items. We assume the cache to be full at the beginning. We need to answer a request sequence $\sigma = \sigma_1, \sigma_2, \ldots, \sigma_m$ where $\sigma_i \in P$ for all i. Each time we want to access an item $x \in P$ one of the following happens:

- If x is not in the cache we remove one element from the cache and add x instead. This induces a cost of 1.
- If x is in the cache we do nothing with a cost of 0.

We define cost of σ to be sum of costs of all request $\sigma_1, \ldots, \sigma_m$. The goal is to minimize the total cost.

Use Yao’s principle and your result in (a) to show that every randomized algorithm for this problem is $\Omega(\log k)$ competitive.