Algorithmic Game Theory and the Internet

Summer Term 2019

Exercise Set 3

Exercise 1:

(3+3+4 Points)Consider the local search problem *Positive Not-All-Equal kSat* (Pos-NAE-kSAT) which is defined the following way:

Instances: Propositional logic formula with n binary variables x_1, \ldots, x_n that is described by m clauses c_1, \ldots, c_m . Each clause c_i has a weight w_i and consists of exactly k literals, which are all positive (i.e., the formula does not contain any negated variable \overline{x}_i).

Feasible solutions: Any variable assignment $s \in \{0, 1\}^n$

- **Objective function:** Sum of weights of clauses c_i in which not all literals are mapped to the same value.
- **Neighbourhood:** Assignments s and s' are *neighbouring* if they differ in the assignment of a single variable.
 - (a) Show: Pos-NAE-kSAT is in PLS.
 - (b) Show: Pos-NAE-2SAT \leq_{PLS} MaxCut
 - (b) Show: Pos-NAE-3SAT \leq_{PLS} Pos-NAE-2SAT

Exercise 2:

(4 Points)

We define a Congestion Game to be symmetric, if $\Sigma_1 = \ldots = \Sigma_n$. Let $PNE_{Cong. Game}$ and $PNE_{Sym. Cong. Game}$ be the local search problems in PLS of finding a pure Nash equilibrium of a general or symmetric Congestion Games, respectively.

Show: $PNE_{\text{Cong. Game}} \leq_{PLS} PNE_{\text{Sym. Cong. Game}}$.

Hint: Add an auxiliary resource for each player with a suitable delay function.

Exercise 3:

(2+2 Points)

Consider the following cost-minimization game. Two car drivers approach a junction. Both drivers can either stop at (S) or cross (C) the junction. If a driver decides to stop, small costs emerge to her because of the waiting time. If both drivers decide to cross the junction, they will crash – resulting in high costs for both drivers.

	C(ross)		S(top)	
C(ross)		100		1
	100		0	
S(top)		0		1
	1		1	

- (a) List all pure and mixed Nash equilibria.
- (b) State a *coarse-correlated equilibrium* that is not a pure or mixed Nash equilibrium.

Hint: Think of a probability distribution p "implementing" traffic lights.

Exercise 4:

(2 Points)

Let p, p' be coarse correlated equilibria of a cost-minimization game Γ . Prove that any convex combination of the distributions p and p' yields also coarse correlated equilibrium of Γ (i.e., any distribution $q := \lambda p + (1 - \lambda)p'$ for a $\lambda \in [0, 1]$).