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PAC Learning

Instructor: Thomas Kesselheim

Throughout this course, we have often seen optimization problems, in which we assumed to
know a probability distribution. The degree of knowledge that is necessary certainly depends on
what we want to use it for. Today, we will get to know a concept that allows us to describe how
much we actually have to know. It originates in the theory of machine learning and therefore
we will describe it in this context, but similar ideas spread well beyond this.

1 Learning Model: Realizable Setting

Our task will be to classify data points from some set X. For example, X ⊆ R. The labels will
be binary, i.e., -1 or 1. (The labels could also be 0 and 1 but -1 and 1 is often more convenient.)
For example, the set X could be the set of all e-mails and the labels mean “not spam” or
“spam”. Eventually, for every data point x we are presented, we have to predict the correct
label y ∈ {−1, 1}.

There is a class of hypotheses H, each of the form h : X → {−1, 1}. To keep things simple,
we will first assume to be in the realizable case. This means that there is a ground truth f ∈ H,
which is one of our possible hypotheses, and the correct label to x ∈ X is always f(x). We
want to find a function h ∈ H that is as close as possible to the correct f using only a bounded
number of correctly labeled samples.

In more detail, there is a distribution D over X ×{−1, 1} that we would like to understand.
As we are in the realizable case, whenever D returns (x, y) then y = f(x). We have access to
m samples S = {(x1, y1), . . . , (xm, ym)}. The (xi, yi) are drawn independently and identically
distributed from distribution D.

Definition 21.1. The training error (or empirical risk) errS(h) of a hypothesis h with respect
to a sample set S is

errS(h) :=
1

m
|{h(xi) 6= yi}| .

Given any set S, the hypotheses h ∈ H that minimize errS(h) are called empirical risk min-
imizers. Note that for the ground truth f clearly errS(f) = 0 for all S. So, for all empirical risk
minimizers h we have errS(h) = 0. The difficulty is that there are usually multiple hypotheses h
with no training error. Given only the samples, we have no idea which one is correct, meaning
that it correctly predicts the labels for the rest of X. This is called the true error.

Definition 21.2. The true error (or true risk) errD(h) of a hypothesis h with respect to a
distribution D is

errD(h) := Pr(x,y)∼D [h(x) 6= y] .

Example 21.3. Let X = [0, 1]2 and H be the set of linear classifiers, that is, defined by
a straight line. In this example, h correctly classifies all of S (indicated by the points) but
incorrectly classifies the dotted area. If D is the uniform distribution, then errD(h) corresponds
to the area of the dotted area.
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Naturally, errD(f) = 0. But what about other empirical risk minimizers? How large does
m have to be so that errD(h) becomes small for any empirical risk minimizer? This, of course,
depends on the class of hypotheses H and the distribution D. We will give bounds that hold
for any distribution D and characterize the sampling complexity of H.

As a start, let us consider the most basic case, namely that H is finite but arbitrary.

Theorem 21.4. If m ≥ 1
ε ln

(
|H|
δ

)
, then with probability at least 1−δ, all h ∈ H with errS(h) = 0

have errD(h) < ε.

Proof. Let us consider some h ∈ H with errD(h) ≥ ε, so the true error of h is at least ε. Then

Pr [errS(h) = 0] = Pr [h(x1) = y1, . . . , h(xm) = ym]

= Pr [h(x1) = y1] · . . . ·Pr [h(xm) = ym] ≤ (1− ε)m ≤ e−εm .

This means that it is a empirical risk minimizer with probability at most e−εm.
To get a bound that there exists such an h, we use the union bound.

Lemma 21.5 (Union Bound). Let E1, . . . , En be (not necessarily disjoint) events. Then

Pr

[
n⋃
i=1

Ei

]
≤

n∑
i=1

Pr [Ei] .

We apply the bound as follows. The event that exists an h ∈ H with errD(h) ≥ ε and errS(h) =
0 can be considered as the union of all events of the form errS(h) = 0 for a fixed h with
errD(h) ≥ ε, which we have bounded above. So

Pr [∃h ∈ H : errD(h) ≥ ε and errS(h) = 0] ≤ |H|e−εm ≤ δ .

This result shows that finite hypothesis classes are PAC-learnable, which requires that a
similar statement as in the previous theorem is true.

Definition 21.6. Hypothesis class H is PAC-learnable (in the realizable sense) if there is a
function mH and a learning algorithm1 such that for any ε, δ > 0 and any distribution D
admitting errD(f) = 0 for some f ∈ H, given a random sample S of size at least mH(ε, δ) of
correctly labeled data, the algorithm produces a hypothesis hS ∈ H such that Pr [errD(hS) < ε] ≥
1− δ.

PAC stands for “probably approximately correct”. “Probably” means that the probability
is at least 1− δ, “approximately correct” means that errD(hS) < ε.

1Sometimes, it is assumed that the algorithm has to run in polynomial time. We ignore computational issues
in this lecture and only focus on the number of samples.
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2 Growth Function

We will be interested in better guarantees than this one, particularly if H is infinite but has
a nice structure. If H is the set of all functions, then a set of m data points could have 2m

different labelings. More structured classes of functions (like linear classifiers) only admit much
few such labelings.

Definition 21.7. Given S ⊆ X, let H[S] be the number of distinct ways to label S using a
function in H. That is, if S = {x1, . . . , xm} then

H[S] = |{(h(x1), . . . , h(xm)) ∈ {−1, 1}m | h ∈ H}| .

The growth function of H is defined as H[m] = maxS⊆X,|S|=mH[S].

Trivially, H[m] ≤ 2m. If, for example, X = R and H is the class of functions of the form

h(x) =

{
−1 for x ≤ t
1 otherwise

then H[m] = m+ 1.

Theorem 21.8. For all choices of ε > 0, δ > 0, if

m ≥ max

{
8

ε
,
2

ε
log2

(
2H[2m]

δ

)}
,

then with probability at least 1− δ, all h ∈ H with errS(h) = 0 have errD(h) < ε.

Proof. Let A be the event that there is h ∈ H with errD(h) ≥ ε but errS(h) = 0. We would like
to show Pr [A] ≤ δ.

To bound the probability of A, we introduce an auxiliary event. To this end, let S′ be
another draw of m independent samples from D. Let B be the event that there is h ∈ H with
errS′(h) ≥ ε

2 but errS(h) = 0.
Below, we will show the following two claims:

(a) Pr [B | A] ≥ 1
2

(b) Pr [B] ≤ δ
2 .

In combination, the theorem follows because Pr [A] ≤ 2Pr [B] by Pr [B] ≥ Pr [B | A] Pr [A]
and therefore Pr [A] ≤ 2 δ2 = δ.

Let us first show Claim (a). Let us understand what this conditional probability expresses.
Event A has already occured. This depends only on the set S and requires that there is h ∈ H
with errD(h) ≥ ε but errS(h) = 0.

We now claim that with probability at least 1
2 there is also h ∈ H with errS′(h) ≥ ε

2 but
errS(h) = 0. More specifically, we claim that even for the same S that caused A to happen
we have errS′(h) ≥ ε

2 with probability at least 1
2 . In other words, h has to classify at least

m ε
2 elements of S′ incorrectly. We fill S′ by independent draws from D and we know that

errD(h) ≥ ε. In other words, we perform m independent biased coin tosses. The probability the
coin comes up heads is at least ε in each toss. We claim that with probability at least 1

2 we see
at least ε

2m times heads.
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Let Z be the number of heads in the coin tosses. We have E [Z] ≥ εm and Var[Z] ≤ ε(1−ε)m
if ε ≤ 1

2 . So, by Chebyshev’s inequality

Pr
[
Z ≤ ε

2
m
]
≤ Pr

[
|Z −E [Z]| ≥ ε

2
m
]
≤ Var[Z](

ε
2m
)2 ≤ ε(1− ε)m(

ε
2m
)2 =

4(1− ε)
εm

≤ 1

2
,

where in the last step we use that m ≥ 8
ε .

It remains to show Claim (b). To bound the probability of event B to happen, we devise a
different but equivalent way of determining S and S′: We draw 2m times from the distribution
D; let the outcome be called T . Now, draw m times without replacement from T , let the
outcome be called S, and let S′ = T \ S.

Fix the set T and consider a fixed h ∈ H. Let h(x) 6= f(x) for exactly k elements of T . The
only way we can have errS′(h) ≥ ε

2 is that k ≥ ε
2m.

Furthermore, the probability that h is correct on all of S is given as

Pr [errS(h) = 0 | T ] =
2m− k

2m
· 2m− k − 1

2m− 1
· . . . · m− k + 1

m+ 1

=
m(m− 1) . . . (m− k + 1)

(2m)(2m− 1) . . . (2m− k + 1)
≤ 2−k .

This means that for a fixed h and a fixed T

Pr
[
errS(h) = 0 and errS′(h) ≥ ε

2

∣∣∣ T] ≤ { 0 if k < ε
2m

2−k otherwise

}
≤ 2−

ε
2
m .

Now, the key difference to the previous, much simple proof happens: the set T has size only
2m. This means, because only the function values on T matter, effectively there are at most
H[2m] different choices for h. Therefore, the union bound now gives us

Pr [B | T ] = Pr
[
∃h ∈ H : errS(h) = 0 and errS′(h) ≥ ε

2

∣∣∣ T] ≤ H[2m]2−
ε
2
m ≤ δ

2
.

This bound holds for all conditional probabilities, no matter which set T we use. Therefore also
the unconditional probability is bounded this way.
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